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Abstract

For a densely defined self-adjoint operator H in Hilbert space F the op-
erator exp(−itH) is known to be an evolution operator for the Schrödinger
equation iψ′t = Hψ, i.e. if ψ(0, x) = ψ0(x) then ψ(t, x) = (exp(−itH)ψ0)(x)
for x ∈ Q. The space F here is the space of wave functions ψ defined on the
configuration space Q of a quantum system, and H is the Hamiltonian of
the system. In this paper the operator exp(−itH) for all real values of t is
expressed in terms of the family of self-adjoint bounded operators S(t), t ≥ 0
that is Chernoff-tangent to the operator H. One can take S(t) = exp(tH),
or use even more simple families S that are listed in the paper in the guide-
lines on applying the method. The main theorem is proven on the level of
semigroups of bounded operators in F so it can be widely used due to it’s
generality.
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1. Introduction

Feynman formula is a representation of a function (usually — a solution
to the Cauchy problem for a partial differential equation (PDE)) in a form
of the limit of a multiple integral where the multiplicity tends to infinity. In
this article I introduce a more general concept:

Definition 1.1. Quasi-Feynman formula is a representation of a function in a
form which includes multiple integrals of an infinitely increasing multiplicity.

The difference from a Feynman formula is that in a quasi-Feynman for-
mula summation and other functions/operations may be used while in a
Feynman formula only the limit of a multiple integral where the multiplicity
tends to infinity is allowed.

The formula (2) and other formulas from the theorem 3.1 proven in this
article are examples of quasi-Feynman formulas in the case when some im-
portant (and later discussed) family (S(t))t≥0 consists of integral operators;
formulas obtained give the exact solution to the Cauchy problem for the
Schrödinger equation.

The Schrödinger equation is one of the main equations in quantum me-
chanics. The solution to the Cauchy problem for this equation iψ′t(t, x) =
Hψ(t, x), ψ(0, x) = ψ0(x) is known to be provided by the evolution opera-
tor exp(−itH) in the form ψ(t, x) = (exp(−itH)ψ0)(x). From the point of
view of functional analysis exp(−itH) is a one-dimensional (parametrized
by t ∈ R) group of unitary operators in Hilbert space. Both physicists
and mathematicians study the properties of exp(−itH) from the middle of
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XX century in different aspects, e.g. asymptotic behavior, estimates, re-
lated spatio-temporal structures, wave traveling, boundary conditions etc.
Some of the recent papers related to the Cauchy problem solution study are
[4, 34, 14, 17, 30, 26, 35, 36, 37].

In this paper I propose a method of obtaining the exact formulas that
express exp(−itH) explicitly in terms of coefficients of the operator H. The
solution is obtained in the form of quasi-Feynman formula. Quasi-Feynman
formulas are easier to obtain (compared with Feynman formulas) but they
provide lengthier approximation expressions.

Having appeared first in the pioneering works by R. P. Feynman [2, 3] on
the physical level of rigor, Feynman formulas were extremely useful for physi-
cists in studying the Schrödinger equation. Later mathematicians developed
a consistent theory of such formulas and still continue finding more and more
applications of Feynman’s idea to various PDEs. Note that since 1948 the
evolution led us to a rather complicated terminology: now we have Feynman
integral, Feynman (pseudo)measure, Feynman formulas and all these are dif-
ferent objects from the mathematical point of view, and different authors
define all that in a different way.

In this paper I touch only Feynman formulas and following [13] use the
term ”Feynman formula” in the sense given above. The history of research
into Feynman formulas and a sketch of results obtained up to 2009 one can
find in [5], see also the overview [6] dedicated to Feynman formulas for a
Schrödinger semigroup (2011). The most recent (but not complete) overview
is [7] (2014, in Russian).

One of the ways of obtaining and proving Feynman formulas is to use
a one-parameter strongly continuous semigroup of bounded linear operators
(this means the same as C0-semigroup, the definition will be provided below)
as a solution-giving object, and the Chernoff theorem as the main technical
tool to deal with the C0-semigroup. Below I cite the full text of the Chernoff
theorem and propose a way of structuring its conditions into blocks. This
theorem says that to obtain an explicit formula for a C0-semigroup it is
enough to find a one-parameter family of bounded linear operators that is
Chernoff-equivalent to the C0-semigroup. So the task of solving the Cauchy
problem for an evolutionary PDE is reformulated as the task of finding an
appropriate family of operators. In all known examples families of integral
operators are used, and the Chernoff theorem requires to compose them
many times, this is how multiple integrals in Feynman formulas arise in this
approach. After an example of such a way was presented [13] in 2002 by
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O. G. Smolyanov, there were published about 25 papers using it by 2015.
The advances achieved employing this idea one can find in the papers by

Ya. A. Butko (now Kinderknecht), M. S. Buzinov, V. A. Dubravina, A. V. Du-
ryagin, A. S. Plyashechnik, V. Zh. Sakbaev, N. N. Shamarov, O. G. Smolyanov
and in the references therein (the list of researchers provided is incomplete).
Some of the relevant papers are [19, 29, 31, 32, 33, 8, 15, 16, 18] but this list
is also incomplete.

In this paper I make the next step after the inventors of the Trotter prod-
uct formula and the Chernoff product formula presenting the formula R(t) =
exp[i(S(t) − I)] from which the quasi-Feynman formulas for exp(−itH) are
derived. The method presented seems accessible to a broad audience, which
includes specialists in functional analysis, quantum mechanics, quantum in-
formatics and mathematical physics.

To help people in employing the method in this paper I put not only
the proof of the main theorem (th. 3.1 below), but also an explanation
of its emergence, guidelines for using it and simple model example of its
application. In the end of the text one can find a short summary of what is
done.

2. Preliminaries

In this section the essential background in C0-(semi)group theory is pro-
vided. The reader may skip it or refer to textbooks [9, 10, 11]. However, I
recommend to look it through to keep in mind what methods and definitions
will be used in the main part of the paper.

Definition 2.1. Let F be a Banach space over the field C. Let L(F) be
a set of all bounded linear operators in F . Suppose we have a mapping
V : [0,+∞)→ L(F), i.e. V (t) is a bounded linear operator V (t):F → F for
each t ≥ 0. The mapping V is called a C0-semigroup, or a strongly continuous
one-parameter semigroup if it satisfies the following conditions:

1) V (0) is the identity operator I, i.e. ∀ϕ ∈ F : V (0)ϕ = ϕ;
2) V maps the addition of numbers in [0,+∞) into the composition of

operators in L(F), i.e. ∀t ≥ 0,∀s ≥ 0 : V (t + s) = V (t) ◦ V (s), where for
each ϕ ∈ F the notation (A ◦B)(ϕ) = A(B(ϕ)) is used;

3) V is continuous with respect to the strong operator topology in L(F),
i.e. ∀ϕ ∈ F function t 7−→ V (t)ϕ is continuous as a mapping [0,+∞)→ F .

The definition of a C0-group is obtained by the substitution of [0,+∞)
by R in the paragraph above.
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If (V (t))t≥0 is a C0-semigroup in Banach space F , then the set{
ϕ ∈ F : ∃ lim

t→+0

V (t)ϕ− ϕ
t

}
denote

= Dom(L)

is dense in F . The operator L defined on the domain Dom(L) by the equality

Lϕ = lim
t→+0

V (t)ϕ− ϕ
t

is called an infinitesimal generator (or just generator to make it shorter) of the
C0-semigroup (V (t))t≥0. The generator is a closed linear operator that defines
the C0-semigroup uniquely, and the notation V (t) = etL is used. If L is a
bounded operator and Dom(L) = F then etL is indeed the exponent defined

by the power series etL =
∑∞

k=0
tkLk

k!
converging with respect to the norm

topology in L(F). In most interesting cases the generator is an unbounded
differential operator such as Laplacian ∆.

One of the reasons for the popularity of C0-semigroups is their connec-
tion with differential equations. Let us briefly explain the main idea of this
connection not touching upon particular cases. If Q is a set, then the func-
tion u: [0,+∞) × Q → C, u: (t, x) 7−→ u(t, x) of two variables (t, x) can be
considered as a function u: t 7−→ [x 7−→ u(t, x)] of one variable t with values
in the space of functions of the variable x. If u(t, ·) ∈ F then one can de-
fine Lu(t, x) = (Lu(t, ·))(x). If there exists a C0-semigroup (etL)t≥0 then the
Cauchy problem {

u′t(t, x) = Lu(t, x) for t > 0, x ∈ Q
u(0, x) = u0(x) for x ∈ Q

has a unique (in sense of F , where u(t, ·) ∈ F for every t ≥ 0) solution
u(t, x) = (etLu0)(x) depending on u0 continuously. See [9, 10, 11] for the
details or [19] for a particular example of employing this technique. Note
that if there exists a strongly continuous group (etL)t∈R then in the Cauchy
problem the equation u′t(t, x) = Lu(t, x) can be considered not only for t > 0,
but for t ∈ R, and the solution is provided by the same formula u(t, x) =
(etLu0)(x). One should also keep in mind that V (t) and Vt are widely used
as synonyms in the papers and books on C0-semigroups.

The following famous theorem is one of the basic facts in quantum me-
chanics because it implies the existence and uniqueness of the solution for
the Cauchy problem for the Schrödinger equation.
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Theorem 2.1. (M.H. Stone [20], 1932) There is a one-to-one correspon-
dence between the linear self-adjoint operators H in Hilbert space F and the
unitary strongly continuous groups (W (t))t∈R of linear bounded operators in
F . This correspondence is the following: iH is the generator of (W (t))t∈R,
which is denoted as W (t) = eitH .

Corollary 2.1. If A is a linear self-adjoint operator in Hilbert space, then∥∥eiA∥∥ = 1.

Remark 2.1. Note that a linear self-adjoint operator in Hilbert space F by
definition is closed and its domain is dense in F .

The following Chernoff theorem allows to construct the C0-semigroup in
F having suitable family of linear bounded operators in F . This family
usually does not have a semigroup composition property but is pretty close
to a C0-semigroup in the sense described in the theorem below. For many
C0-semigroups such families G are known or have been constructed in the
past 15 years, see [19, 29, 31, 32, 33, 8, 15, 16, 18].

Theorem 2.2. (P.R. Chernoff, 1968; see [12] or theorem 10.7.21 in
[21]) Let F be a Banach space, and L(F) be the space of all linear bounded
operators in F endowed with the operator norm. Let L:Dom(L) → F be a
linear operator defined on Dom(L) ⊂ F , and G be an L(F)-valued function.

Suppose that L and G satisfy:
(E). There exists a C0-semigroup (etL)t≥0 and its generator is (L,Dom(L)).
(CT1). The function G is defined on [0,+∞), takes values in L(F), and

the mapping t 7−→ G(t)f is continuous for every vector f ∈ F .
(CT2). G(0) = I.
(CT3). There exists a dense subspace D ⊂ F such that for every f ∈ D

there exists a limit G′(0)f = limt→0(G(t)f − f)/t.
(CT4). The operator (G′(0),D) has a closure (L,Dom(L)).
(N). There exists ω ∈ R such that ‖G(t)‖ ≤ eωt for all t ≥ 0.
Then for every f ∈ F I have (G(t/n))nf → etLf as n → ∞, and the

limit is uniform with respect to t ∈ [0, t0] for every fixed t0 > 0.

Definition 2.2. Let F and L(F) be as before. Let us call two L(F)-valued
mappings G1 and G2 defined both on [0,+∞) (respectively, both on R)
Chernoff-equivalent iff G1(0) = G2(0) = I and for each f ∈ F and each T > 0
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lim
n→∞

sup
t ∈ [0, T ]

(resp. t ∈ [−T, T ])

∥∥∥∥(G1

(
t

n

))n

f −
(
G2

(
t

n

))n

f

∥∥∥∥ = 0.

Remark 2.2. There are several slightly different definitions of the Chernoff
equivalence, I will just follow [18] not going into details. The only thing
I need from this definition is that if G1 and L satisfy all the conditions
of the Chernoff theorem, then by the Chernoff theorem the mapping G1 is
Chernoff-equivalent to the mapping G2(t) = etL. In other words, the limit of
(G1(t/n))n yields the C0-(semi)group (etL)t≥0 as n tends to infinity.

Definition 2.3. Let us call a mapping G Chernoff-tangent to the operator
L iff it satisfies the conditions (CT1)-(CT4) of the Chernoff theorem.

Remark 2.3. With these definitions the Chernoff-equivalence ofG to (etL)t≥0
follows from: the existence (E) of the C0-semigroup + Chernoff-tangency
(CT) + the growth of the norm (N) bound.

Corollary 2.2. If F is a Banach space, and A:F → F is a linear bounded
operator, then

eA =
∞∑
k=0

Ak

k!
= lim

k→∞

(
I +

A

k

)k

.

Proof. The operator A is the generator of the C0-semigroup
(
etA
)
t≥0 de-

fined by the formula etA =
∑∞

k=0
tkAk

k!
, see [10] Chapter I, section 3: Uniformly

continuous operator semigroups. Setting L = A, D = F , G(t) = I + tA and
ω = ‖A‖ in theorem 2.2 establishes the equality etA = limn→∞

(
I + tA

n

)n
.

The proof is complete after setting t = 1.�

Remark 2.4. The condition (CT3) of the Chernoff theorem says thatG(t)f =
f+tLf+o(t) for each f ∈ D. It seems promising to claim for fixed k ∈ N that
G(t)f = f + tLf +o(tk) and try to prove that this implies faster convergence
(G(t/n))nf → etLf .

Remark 2.5. Also note that the (N) condition ‖G(t)‖ ≤ eωt in practice of
constructing Chernoff-equivalent families (G(t))t≥0 is usually hard to obtain
for 0 < t� 1 and the case t� 1 is simple.
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3. The Method

Remark 3.1. Usually the Schrödinger equation is written in the form iψ′t =
Hψ where H is the Hamiltonian of the system studied. However, to apply
the (semi)group theory it is more natural to write it in the form ψ′t = iHψ.
I do not call the operator H = −H a Hamiltonian, but use the notation
ψ′t = iHψ for the Schrödinger equation. Even more, I write it in the form

ψ′t = iaHψ

for some real non-zero number a. This allows us to write the C0-groups
(eitH)t∈R and (e−itH)t∈R in one formula (eiatH)t∈R just setting a = 1 or a = −1.
One can also consider a as a small or large parameter for studying degenerate
equations or applying perturbation theory.

Theorem 3.1. Suppose that a linear self-adjoint operator H:F ⊃ Dom(H)→
F in a complex Hilbert space F and a non-zero number a ∈ R are given. Sup-
pose that the mapping S is Chernoff-tangent to H and (S(t))∗ = S(t) for each
t ≥ 0.

Then the following holds. First, the family
(
eia(S(t)−I)

)
t≥0 is Chernoff-

equivalent to the C0-semigroup (eiatH)t≥0 and for each fixed t ≥ 0 and f ∈ F
with respect to the norm in F

eiatHf =
(

lim
n→∞

(
eia(S(t/n)−I)

)n)
f, eiatHf =

(
lim
n→∞

eian(S(t/n)−I)
)
f, (1)

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

imamnm

m!
(S(t/n)− I)m

)
f, (2)

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−qimamnm

q!(m− q)!
(S(t/n))q

)
f, (3)

eiatHf =

(
lim
n→∞

lim
k→∞

[(
1− ian

k

)
I +

ian

k
S(t/n)

]k)
f, (4)

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

k!(k − ian)k−m(ian)m

m!(k −m)!kk
(S(t/n))m

)
f, (5)
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eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

k−m∑
q=0

(−1)k−m−qk! (ian)k−q

m!q!(k −m− q)!kk−q
(S(t/n))m

)
.f (6)

Second, the family
(
eia(S(|t|)−I)sign(t)

)
t∈R is Chernoff-equivalent to the group

(eiatH)t∈R and for each fixed t ∈ R and f ∈ F with respect to the norm in F

eiatHf =
(

lim
n→∞

(
eia(S(|t/n|)−I)sign(t)

)n)
f, eiatHf =

(
lim
n→∞

eian(S(|t/n|)−I)sign(t)
)
f,

(7)

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

imamnm(sign(t))m

m!
(S(|t/n|)− I)m

)
f, (8)

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−qimamnm(sign(t))m

q!(m− q)!
(S(|t/n|))q

)
f, (9)

eiatHf =

(
lim
n→∞

lim
k→∞

[(
1− ian sign(t)

k

)
I +

ian sign(t)

k
S(|t/n|)

]k)
f, (10)

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
q=0

k!(k − ian sign(t))k−q(ian sign(t))q

q!(k − q)!kk
(S(|t/n|))q

)
f,

(11)

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

k−m∑
q=0

(−1)k−m−qk! (ian sign(t))k−q

m!q!(k −m− q)!kk−q
(S(|t/n|))m

)
f,

(12)
where |x| above stands for the absolute value of the number x.
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Proof. Let us check the conditions of the Chernoff theorem for the
L(F)-valued mapping R(t) = exp(ia(S(t) − I)) and the operator iaH. For
fixed t > 0 the operator ia(S(t) − I) is linear and bounded (recall (CT1)
for S), so the exponent eia(S(t)−I) is well-defined by the power series and the
operator eia(S(t)−I) is linear and bounded. The continuity of t 7−→ R(t) in
the strong operator topology follows from the continuity of t 7−→ S(t) in
the strong operator topology and the continuity of the exponent in the norm
topology. So (CT1) for R is completed. (CT2) for R follows from (CT2) for
S: R(0) = eia(S(0)−I) = eia(I−I) = e0 = I.

Let us prove (CT3) for R. Remember that (CT1) for S says that for
every f ∈ F the function Kf : [0,+∞) 3 t 7−→ S(t)f ∈ F is continuous. So
by the Weierstrass extreme value theorem the set Kf ([0, 1]) ⊂ F is compact
and hence bounded for each f ∈ F . This means that for each f ∈ F there
exists a number Cf > 0 such that ‖S(t)f‖ ≤ Cf for all t ∈ [0, 1]. Next,
by the Banach-Steinhaus uniform boundedness principle the family of linear
bounded operators (S(t))t∈[0,1] is bounded collectively, i.e. there exists a
number C > 0 such that ‖S(t)‖ < C for all t ∈ [0, 1]. Suppose that linear
operator A:F → F is bounded. Then eA = I + A + A2 1

2!
+ A3 1

3!
+ . . . =

I + A+ A2
∑∞

n=0
An

(n+2)!

denote
= I + A+ A2Ψ(A). One can see that

‖Ψ(A)‖ =

∥∥∥∥∥
∞∑
n=0

An

(n+ 2)!

∥∥∥∥∥ ≤
∞∑
n=0

‖A‖n

(n+ 2)!
≤

∞∑
n=0

‖A‖n

n!
= e‖A‖.

Set A = ia(S(t) − I). Then the estimates ‖A‖ = ‖ia(S(t) − I)‖ ≤
|a|(C + 1) and Ψ(ia(S(t) − I)) ≤ e|a|(C+1) hold for all t ∈ [0, 1]. So for all
t ∈ (0, 1] I have

R(t)f − f
t

= ia
S(t)f − f

t
− a2Ψ

(
ia(S(t)− I)

)(
S(t)− I

) S(t)f − f
t

. (13)

Suppose that f ∈ D is fixed. Due to (CT3) for S there exists a limit

limt→0
S(t)f−f

t
= Hf, so S(t)f−f

t
= Hf + o(1). In the right-hand side of (13)

the last term for t ∈ (0, 1] can be estimated as follows:∥∥∥∥−a2Ψ(ia(S(t)− I)) (S(t)− I)
S(t)f − f

t

∥∥∥∥ ≤
| − a2| · ‖Ψ(ia(S(t)− I))‖ ·

∥∥∥∥(S(t)− I)
S(t)f − f

t

∥∥∥∥ ≤
10



|a|2e|a|(C+1)‖(S(t)− I)(Hf + o(1))‖ ≤

|a|2e|a|(C+1)
(
‖(S(t)− I)(Hf)‖+ ‖(S(t)− I)(o(1))‖

)
.

If t → 0 then ‖(S(t) − I)(Hf)‖ → 0 by (CT1) and (CT2) for S. Also
‖(S(t)− I)(o(1))‖ → 0 because ‖o(1)‖ → 0 and for t ∈ (0, 1] I have the norm
bound ‖S(t)− I‖ ≤ C + 1. So proceeding to the limit t→ 0 in (13) I obtain

limt→0
R(t)f−f

t
= ia limt→0

S(t)f−f
t

= iaHf, which is (CT3) for R.
[(CT4) for S]=[(H,D) has the closure (H,Dom(H))]⇐⇒ [(iaH,D) has

the closure (iaH,Dom(H))]=[(CT4) for R] because Dom(H) = Dom(iaH).
By the Stone theorem the operator (iaH,Dom(H)) is the generator for

the strongly continuous group (eiatH)t∈R and of the strongly continuous semi-
group (eiatH)t≥0 in particular, so (E) for R also holds. (N) with ω = 0 for R
follows from the condition (S(t))∗ = S(t) and the corollary 2.1.

All the conditions of the Chernoff theorem for R are fulfilled, which proves
the formulas (1). To obtain (2) and (4) recall corollary 2.2 which states for

the bounded operator A the equalities eA =
∑∞

k=0
Ak

k!
= limk→∞(I + A

k
)k and

set A = ian(S(t/n)− I). Applying the Newton binomial formula to (2) and
(4), one obtains (3) and (5) respectively. Applying it to (5) provides (6).

To prove (7) – (12) substitute t by −t, a by −a and apply the generation
theorem for the groups from [10] at p.79. �

Remark 3.2. Note that all the limits in the theorem 3.1 are NOT formal
signs. They exist in F , and this is an important part of theorem’s statement.

Remark 3.3. Note that in the theorem 3.1 f ∈ F is fixed. The theorem
does not state the uniform convergence of the limits with respect to f ∈ F
or with respect to f from some subset of F . If F is a space of some functions
F 3 f :Q → C, x 7−→ f(x), then the theorem does not state the uniform
convergence of the limits with respect to x ∈ Q.

Remark 3.4. If the operators (S(t))t≥0 are integral operators, then the
formulas obtained in the theorem above include both multiple integration
(like Feynman formulas) and summation (not like Feynman formulas), this
is why I propose to call them quasi-Feynman formulas. Such formulas give
us one of the ways to solve the Cauchy problem for the equation ψ′t(t, x) =
iaHψ(t, x). Possibly it is better to call this equation the general Schrödinger
equation for two reasons. First, I allow H to be more complicated than a
second-order differential (with respect to the spatial coordinate x) operator.
Second, I admit that x can range over more complicated spaces than R3.
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Remark 3.5. The conditions S(t) = (S(t))∗ and H = H∗ in the theo-
rem above are not independent because the Chernoff tangency implies that
S(t)f = f + tHf + o(t) as t→ 0 for each f from the core of H.

Remark 3.6. If S is Chernoff-tangent to H but S(t) 6= (S(t))∗ for some t,
one can substitute S(t) by (S(t) + (S(t))∗)/2.

Remark 3.7. As we do not need to control the norm growth (N) anymore,
one can write a polynomial of S(t) in the index of the exponent like R(t) =
exp[i(a0I + a1S(t) + a2(S(t))2 + . . . + an(S(t))n)] or calculate S(t) in many
points like R(t) = exp[i(a0I + a1S(g1(t)) + . . . + anS(gn(t)))] for the given
functions gj:R→ R and numbers aj ∈ R, or combine these approaches.

Remark 3.8. Yu. A. Komlev and D. V. Turaev have found the following ap-
plication of the remarks 3.7 and 2.4. Let us consider S(t)− I = S(t)−I

t
t as a

two-point finite difference approximation for d
dt
S(t)|t=0. Then, if I try e.g. a

simple three-point approximation d
dt
S(t)|t=0 ≈

1
t
(−3

2
I+ 2S(t)− 1

2
S(2t)) then

the family R(t) = eia(−
3
2
I+2S(t)− 1

2
S(2t)) may give better Chernoff approxima-

tions to eiatH , than eia(S(t)−I). One can also ask what will happen if we take
a d-point approximation and then consider d→∞.

Remark 3.9. For fixed t the S(t): f 7−→ S(t)f is usually an integral opera-
tor over Gaussian measure. If one applies the finite difference approximation
approach from remark 3.8 directly to the function f , i.e. under the sign
of the integral, the we can get family S(t) with S(t)|t=0 = I, d

dt
S(t)|t=0 =

H, d2

dt2
S(t)|t=0 = 0, . . . , dn

dtn
S(t)|t=0 = 0 using fewer terms because the Gaus-

sian measure is symmetric.

Remark 3.10. Theorem 3.1 will be more useful if one proves that (at least
in the most important cases) the continued limit in (2), (4), (8), (10) exists
as double limit, or at least that there exists a sequence (kn) of integers on
which the limit lim

n→∞
lim
k→∞

can be substituted by the limit lim
n→∞

.

4. Why this Method Occurs Naturally

It is usually not easy to construct a family which is Chernoff-equivalent
to (eitH)t≥0 because the conditions of the Chernoff theorem obstruct each
other in some sence when dealing with a Schrödinger equation. To see on
a particular example what the difficulty is and how to overcome it refer to
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[8]. In the case of the heat equation and the C0-semigroup (etH)t≥0 the
situation is usually more simple. So the initial idea (introduced in [24]) was
to use the family (S(t))t≥0 which is Chernoff-equivalent to the C0-semigroup
(etH)t≥0 for constructing the family (R(t))t≥0 which is Chernoff-equivalent to
the C0-semigroup (eitH)t≥0.

Start from separating the conditions of the Chernoff theorem for (R(t))t≥0
into independent blocks: existence of the C0-semigroup + Chernoff-tangency
+ growth of the norm bound. The first block is granted by the Stone theorem
as H is self-adjoint. The second block is algebraic, so one can try to use
algebraic operations to save identity at zero and add i to the derivative at
zero. If we have an analytic function r:C → C with r(0) = 1 and r′(0) = i
then we can define R(t) = r(S(t)). And if we choose r(z) = ei(z−1) and claim
that S(t) = (S(t))∗ then we can use the corollary 2.1 to obtain the third block.
So we come to the formulas R(t) = ei(S(t)−I) and eitH = limn→∞(R(t/n))n.

After all we see that in the proof we do not need the Chernoff-equivalence
of the family (S(t))t≥0 to the C0-semigroup (etH)t≥0, we need only the Chernoff-
tangency of (S(t))t≥0 to the operator H. Indeed, the proof holds on even if
the C0-semigroup (etH)t≥0 does not exist and the norm of S(t) grows at any
rate with respect to the growth of t. So I have reduced the difficult task of
constructing the family which is Chernoff-equivalent to (eitH)t≥0 to a more
simple task of constructing a family which is Chernoff-tangent to H. And
the condition S(t) = (S(t))∗ that I require does not seem very restraining
due to remarks 3.5 and 3.6.

Writing ei(S(|t|)−I)sign(t) instead of ei(S(t)−I) arises as formal generalization
step from the case t ≥ 0 to the case t ∈ R. Adding a 6= 0 to the formula helps
to write the C0-groups (eitH)t∈R and (e−itH)t∈R in one formula (eiatH)t∈R just
setting a = 1 or a = −1, also a may be used as a small or large parameter.

5. Guidelines on Applying the Method

As already mentioned, C0-semigroups can be used to study so-called evo-
lutionary equations, i.e. equations in the form u′t(t, x) = Lu(t, x). Bright
examples of such equations are the heat equation u′t(t, x) = Hu(t, x) and the
Schrödinger equation ψ′t(t, x) = iHψ(t, x). Here t ∈ [0,+∞) is time, and the
spatial variable x ranges over the set Q. In practice, Q is a configuration
space of the system studied and is defined by the physical process that mo-
tivates a mathematical setting of the problem. For example, if we study the
heat propagation in a ball B ⊂ R3, then Q = B.
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Above I discussed a very general case as I dealed only with C0-semigroups
and C0-groups not taking into account what space Q stays behind them. So
the technique presented may be potentially employed in a case when Q is Rn

or some subset of Rn, Cn or some subset of Cn, a linear (Hilbert, Banach,
etc.) space or some subset of it, a lattice [34], a manifold of a finite or infinite
dimension, a group, an algebra, a graph etc.

If one wants to do this, then F should be a complex Hilbert space of some
functions f :Q→ C. With the method presented we can study equations for
such functions ψ: [0,+∞) × Q → C that for every fixed moment of time
t ∈ [0,+∞) the function x 7−→ ψ(t, x) belongs to F , and the function t 7−→
ψ(t, ·) is continuous and differentiable as a mapping [0,+∞) → F . The
discussion above does not lean on the nature of the scalar product in F . For
example, it can originate from the fact that F = L2(Q, µ) for some measure
µ in Q, or it can be based on some more complicated structures. As a very
particular yet important case let us mention Q = R3 and F = L2(R3) for the
classical Schrödinger equation.

As for the operator H, we need it to be linear and self-adjoint (hence
densely defined and closed). For example, H = ∆ or H = ∆2 or (Hψ)(x) =
(∆ψ)(x) + V (x)ψ(x) or some other. We need the coefficients of H not to
depend on t; nevertheless, they may depend on x ∈ Q.

Next, to construct a family (S(t))t≥0 which is Chernoff-tangent to the
operator H in F = L2(Q, µ) one can use the following identities. They
depend on Q and I state them without some important details just to sketch
the idea. Denote a Gaussian measure [27, 28] in Q with a correlation operator
B as µB. Let g:Q → R be a function bounded from zero and infinity plus
some other properties, one can consider g(x) ≡ 1

2
in this paragraph as a

particular case. Let V :Q → R be a function with V (x) ≤ 0 and some
other properties. Then the identities similar to

∫
Q
f(x + y)µ2tg(x)A(dy) =

f(x)+ tg(x)trace[Af ′′(x)]+o(t) and etV (x)f(x) = f(x)+ tV (x)+o(t) hold. If
one denotes (S(t)f)(x) =

∫
Q
f(x+ y)µ2tg(x)A(dy) then (S(t))t≥0 is Chernoff-

tangent to H = g(·)∆ as (S(t)f)(x) = f(x) + tg(x)∆f(x) + o(t). If one
denotes (S(t)f)(x) = etV (x)

∫
Q
f(x+y)µ2tg(x)A(dy) then (S(t))t≥0 is Chernoff-

tangent toH = g(·)∆+V (·) as (S(t)f)(x) = f(x)+t[g(x)∆f(x)+V (x)f(x)]+
o(t). See these and some other useful formulas in more details with precise
mathematical statements in [19, 29, 31, 32, 33, 8, 15, 16, 18].

Final step. Suppose that all the conditions mentioned in this section
above are satisfied. Suppose that we have constructed a family (S(t))t≥0
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which is Chernoff-tangent to H. Then the Cauchy problem in F{
ψ′t(t, x) = iaHψ(t, x); t ∈ R, x ∈ Q
ψ(0, x) = ψ0(x); x ∈ Q

stated for arbitrary ψ0 ∈ F and non-zero a ∈ R has the unique in sense of F
solution ψ(t, x) =

(
eiatHψ0

)
(x) depending on ψ0 continuously with respect

to the norm in F , where for every t ∈ R the operator eiatH from the C0-group(
eiatH

)
t∈R in F is granted by the theorem 3.1. If ψ0 ∈ Dom(H) then the

solution obtained is called a strong solution, and in the general case ψ0 ∈ F
it is called a mild solution, see [11] for the details.

6. Toy Model Example: the Method in Use

A. S. Plyashechnik proposed a simple model to show how the method
works and what sort of formulas for the solution it provides. Suppose that
non-zero number a ∈ R and a differentiable function V ∈ C1

b (R,R) bounded
with its first derivative are given. Consider the Cauchy problem in L2(R1,C){

i
a
ψ′t(t, x) = −1

2
ψ′′xx(t, x) + V (x)ψ(t, x); t ∈ R, x ∈ R

ψ(0, x) = ψ0(x); x ∈ R (14)

Let us rewrite it in the form{
ψ′t(t, x) = iaHψ(t, x); t ∈ R, x ∈ R
ψ(0, x) = ψ0(x); x ∈ R (15)

where H is an operator defined for f ∈ W 2
2 (R) by the formula

(Hf)(x) =
1

2
f ′′(x)− V (x)f(x).

Here W 2
2 (R) ⊂ L2(R) is the Sobolev class, i.e. the linear space of all the

functions f ∈ L2(R) such that f ′ ∈ L2(R) and f ′′ ∈ L2(R) where f ′ and
f ′′ are the distributional derivatives of f . So in theorem 3.1 one can set
F = L2(R) and Dom(H) = W 2

2 (R).
The operator S(t) is constructed as follows. Define

(Ftf)(x) = exp

(
− t

2
V (x)

)
f(x)
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and

(Btf)(x) =
1√
2πt

∫
R
e

−(x−y)2

2t f(y)dy =
1√
2πt

∫
R
e

−y2

2t f(x+ y)dy

for t > 0 and B0f = f. Then let us set S(t) = Ft ◦Bt ◦ Ft, i.e.

(S(t)f)(x) =
1√
2πt

∫
R

exp

(
−y

2

2t
− t

2

[
V (x) + V (x+ y)

])
f(x+ y)dy.

It is not very difficult to check that all the conditions of the theorem
3.1 are fulfilled. To do this one can take the set C∞0 (R,R) of all infinitely
differentiable functions R→ R with compact support for D in the definition
of the Chernoff tangency, and then perform the calculations that are similar
to what is done in [25] in the proof of item 4 of theorem 4.1.

Now take one of the formulas stated in the theorem 3.1, say, formula (9):

eiatHf =

(
lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−q(ian)m(sign(t))m

q!(m− q)!
(S(|t/n|))q

)
f.

In our particular case it implies that the Cauchy problem (14) has defined
for all t ∈ R, the unique in L2(R) solution

ψ(t, x) = lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−q(ian)m(sign(t))m

q!(m− q)!

(
n

2π|t|

)q/2

×

∫
R
. . .

∫
R︸ ︷︷ ︸

q

exp

{
|t|
n

[
−1

2
V (x)−

q∑
p=1

V

(
x+

q∑
d=p

yd

)]
− 1

2|t|

q∑
r=1

y2r

}
×

ψ0

(
x+

q∑
j=1

yj

)
q∏

s=1

dys.

7. Summary

One of the ways to solve the Cauchy problem for an evolutionary partial
differential equation (e.g. a heat equation and a Schrödinger equation) is to
use a C0-semigroup (or a C0-group) as a solution-giving object, and the Cher-
noff theorem as the main technical tool to deal with the C0-semigroup. The
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Chernoff theorem says that to obtain an explicit formula for a C0-semigroup
it is enough to find a one-parameter family of linear bounded operators that
is Chernoff-equivalent to the C0-semigroup. It is known that constructing
such Chernoff-equivalent families for a Schrödinger equation is much more
difficult than doing the same for a heat equation. O.G.Smolyanov and mem-
bers of his team in many cases have constructed Chernoff-equivalent families
that provide the solution to the heat equation. With the method presented
in this article this material can be used to solve the Schrödinger quation.

A C0-group (exp(itH))t∈R with the infinitesimal generator iH exists for
every linear self-adjoint H and provides the solution to the Cauchy problem
for the Schrödinger equation ψ′t(t, x) = iHψ(t, x). If ψ(0, x) = ψ0(x) for a
given ψ0 then ψ(t, x) = (exp(itH)ψ0)(x). Usually F is the L2 over the space
that variable x belongs to, and H is the minus Laplacian plus multiplying
by a potential function. In this article I study the general case when F may
be some other Hilbert space and H may be some other linear self-adjoint
operator in F .

For this general setting of the problem I prove a short formula R(t) =
ei(S(t)−I) to express explicitly a family R that is Chernoff-equivalent to the
C0-semigroup for a Schrödinger equation in the terms of the family S that is
Chernoff-tangent to the operator from the heat equation. This formula leads
to a new class of integral representations of the Cauchy problem solution –
quasi-Feynman formulas. With the method presented the difficulty of solving
the Cauchy problem for a Schrödinger equation reduces twice: we need to
construct a less difficult (Chernoff-tangent) family to a less difficult (heat)
equation. This technique deals with the semigroups and operator families
only, so it works for a large class of Hamiltonians describing dynamics in
a large class of configuration spaces. Quasi-Feynman formulas are easier
to obtain but they provide lengthier approximation expressions (one simple
example is shown in the article). Both Feynman formulas and quasi-Feynman
formulas approximate Feynman path integrals because they are connected via
the C0-group.

The method presented opens several challenging questions – for exam-
ple, it possibly may provide better approximations than Feynman formulas
provide, but this needs to be clarified, see remarks 2.4 and 3.8 above.
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